首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  国内免费   1篇
废物处理   6篇
环保管理   9篇
综合类   6篇
基础理论   13篇
污染及防治   30篇
评价与监测   20篇
社会与环境   4篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   5篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1979年   1篇
  1958年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有88条查询结果,搜索用时 250 毫秒
61.
Leachate emission from uncontrolled municipal solid waste landfills (referred to as waste sites in the present study) is a major threat to the environment and living beings in its vicinity. Surface water contamination potential resulting from leachate may be used as one of the criteria for prioritization of sites for remediation purposes. The existing hazard rating systems that prioritize waste sites considering surface water contamination potential as one of the criteria are mainly suited for the developed countries where these were developed initially. In developing countries like India, the set of conditions differ from those in developed countries, and therefore the existing systems may not be suitable for developing countries. Thus in the present study, an improved system is proposed to assess surface water contamination potential from MSW sites. The system is based on the concept of Source, Pathway and Receptor. The proposed system employs parameters derived from the review of existing rating systems and selects their best and worst values based on literature review, design standards and field conditions. The importance weights of the system parameters have been decided based on expert judgment using Delphi technique. Sensitivity analysis of the system shows that the improved system is more sensitive than the existing systems for the site conditions encountered in developing countries. Monte Carlo analysis of the proposed system confirms the spread of the scores obtained from the system over the full scale of 0–1000. The improved system is compared with existing systems by applying it to waste sites from metropolitan cities of India and performing clustering analysis on the rating scores. The clustering analysis shows that the rating scores from the improved system are less clustered as compared to the scores from the existing systems. This demonstrates that the improved system makes a better tool to distinctly prioritize the waste sites for remediation purpose.  相似文献   
62.
Lead (Pb)-based paints pose a serious health problem to people living in residential settings constructed prior to 1978. Children are at a greater risk to Pb exposure resulting from hand-to-mouth activity in Pb-contaminated residential soils. For soil Pb, the most environmentally friendly, potentially cheap, and visually unobtrusive in situ technology is phytoremediation. However, the limiting factor in a successful phytoremediation strategy is the availability of Pb for plant uptake. The purpose of this study was to establish a relationship between soil properties and the plant-available/exchangeable Pb fraction in the selected Pb-based paint-contaminated residential sites. We selected 20 such sites from two different locations (San Antonio, Texas and Baltimore, Maryland) with varying soil properties and total soil Pb concentrations ranging between 256 and 4,182 mg kg?1. Despite higher Pb levels in these soils that exceeds US EPA permissible limit of 400 mg kg???1, it is known that the plant-available Pb pools are significantly lower because of their sorption to soil components such as organic matter, Fe?CMn oxides, and clays, and their precipitation in the form of carbonates, hydroxides, and phosphates. Principal component analysis and hierarchical clustering showed that the potentially plant-available Pb fraction is controlled by soil pH in the case of acidic Baltimore soils, while soil organic matter plays a major role in alkaline San Antonio soils. Statistical models developed suggest that Pb is likely to be more available for plant uptake in Baltimore soils and a chelant-assisted phytoextraction strategy will be potentially necessary for San Antonio soils in mobilizing Pb from complexed pool to the plant-available pool. A thorough knowledge of site-specific factors is therefore essential in developing a suitable and successful phytoremediation model.  相似文献   
63.
An application of a newly developed optimal monitoring network for the delineation of contaminants in groundwater is demonstrated in this study. Designing a monitoring network in an optimal manner helps to delineate the contaminant plume with a minimum number of monitoring wells at optimal locations at a contaminated site. The basic principle used in this study is that the wells are installed where the measurement uncertainties are minimum at the potential monitoring locations. The development of the optimal monitoring network is based on the utilization of contaminant concentration data from an existing initial arbitrary monitoring network. The concentrations at the locations that were not sampled in the study area are estimated using geostatistical tools. The uncertainty in estimating the contaminant concentrations at such locations is used as design criteria for the optimal monitoring network. The uncertainty in the study area was quantified by using the concentration estimation variances at all the potential monitoring locations. The objective function for the monitoring network design minimizes the spatial concentration estimation variances at all potential monitoring well locations where a monitoring well is not to be installed as per the design criteria. In the proposed methodology, the optimal monitoring network is designed for the current management period and the contaminant concentration data estimated at the potential observation locations are then used as the input to the network design model. The optimal monitoring network is designed for the consideration of two different cases by assuming different initial arbitrary existing data. Three different scenarios depending on the limit of the maximum number of monitoring wells that can be allowed at any period are considered for each case. In order to estimate the efficiency of the developed optimal monitoring networks, mass estimation errors are compared for all the three different scenarios of the two different cases. The developed methodology is useful in coming up with an optimal number of monitoring wells within the budgetary limitations. The methodology also addresses the issue of redundancy, as it refines the existing monitoring network without losing much information of the network. The concept of uncertainty-based network design model is useful in various stages of a potentially contaminated site management such as delineation of contaminant plume and long-term monitoring of the remediation process.  相似文献   
64.
One of the major challenges in developing an effective phytoremediation technology for 2,4,6-trinitrotoluene (TNT) contaminated soils is limited plant uptake resulting from low solubility of TNT. The effectiveness of urea as a solubilizing agent in increasing plant uptake of TNT in hydroponic systems has been documented. Our preliminary greenhouse experiments using urea were also very promising, but further characterization of the performance of urea in highly-complex soil-solution was necessary. The present study investigated the natural retention capacity of four chemically variant soils and optimized the factors influencing the effectiveness of urea in enhancing TNT solubility in the soil solutions. Results show that the extent of TNT sorption and desorption varies with the soil properties, and is mainly dependent on soil organic matter (SOM) content. Hysteretic desorption of TNT in all tested soils suggests irreversible sorption of TNT and indicates the need of using an extractant to increase the release of TNT in soil solutions. Urea significantly (p < 0.0001) enhanced TNT extraction from all soils, by increasing its solubility at the solid/liquid interface. Soil organic matter content and urea application rates showed significant effects, whereas pH did not exert any significant effect on urea catalysis of TNT extraction from soil. The optimum urea application rates (125 or 350 mg kg−1) for maximizing TNT extraction were within the limits set by the agronomic fertilizer-N rates used for major agricultural crops. The data obtained from this batch study will facilitate the optimization of a chemically-catalyzed phytoremediation model for cleaning up TNT-contaminated soils.  相似文献   
65.
Laboratory and greenhouse experiments were conducted to evaluate the effects of farmyard manure (FYM), CaCO(3) and single superphosphate (SSP) on retention and availability of Zn, Cu and Ni in sewage-irrigated soil. We also assessed the suitability of 0.05M EDTA for predicting the effectiveness of these amendments in reducing the phytoavailability of metals. Results indicated that EDTA could successfully predict the phytoavailability of Zn and Ni in amended soil, whereas it failed in case of Cu. By and large, application of CaCO(3), either alone or in combination with FYM had a positive effect on the retention of Zn, Cu and Ni in soil. Application of CaCO(3) alone or in combination with FYM was equally effective in reducing the Zn content in lettuce, whereas sole application of CaCO(3) significantly reduced Ni content. However, only SSP was found to be effective in reducing the Cu content in lettuce.  相似文献   
66.
Chelant-aided enhancement of lead mobilization in residential soils   总被引:3,自引:0,他引:3  
Chelation of metals is an important factor in enhancing solubility and hence, availability to plants to promote phytoremediation. We compared the effects of two chelants, namely, ethylenediaminetetraacetic acid (EDTA) and ethylenediaminedisuccinic acid (EDDS) in enhancing mobilized lead (Pb) in Pb-based paint contaminated residential soils collected from San Antonio, Texas and Baltimore, Maryland. Batch incubation studies were performed to investigate the effectiveness of the two chelants in enhancing mobilized Pb, at various concentrations and treatment durations. Over a period of 1 month, the mobilized Pb pool in the San Antonio study soils increased from 52 mg kg−1 to 287 and 114 mg kg−1 in the presence of 15 mM kg−1 EDTA and EDDS, respectively. Stepwise linear regression analysis demonstrated that pH and organic matter content significantly affected the mobilized Pb fraction. The regression models explained a large percentage, from 83 to 99%, of the total variation in mobilized Pb concentrations.  相似文献   
67.
A series of bentonite polymer-composites (BPCs) loaded with metribuzin were studied for their controlled release in aqueous medium. The release of active ingredient from BPCs was significantly lower as compared to commercial metribuzin formulation. The results revealed that the cumulative metribuzin release was highest (81%) from the BPCs containing 8% clay (commercial bentonite) and 2% metribuzin which correspond to the lowest (14 days) half-life values i.e., time required for 50% release of active ingredient (t1/2). The metribuzin release from the BPCs decreased with increased concentration of clays in polymer matrix and the release was further decreased with BPCs prepared with pure nano-bentonite. BPCs containing 12% clay and 2% metribuzin showed maximum t1/2 values i.e., 25 and 51 days for commercial bentonite and pure nano-bentonite as clay sources, respectively. The differential behaviour in the metribuzin release rates from BPCs was ascribed due to variations in crosslinking of metribuzin in the composites. As metribuzin release was found to be slower in BPCs compared to commercial formulation, it could be used for control of weeds tailored to different crops.  相似文献   
68.
Evaluating a drinking-water waste by-product as a novel sorbent for arsenic   总被引:3,自引:0,他引:3  
Makris KC  Sarkar D  Datta R 《Chemosphere》2006,64(5):730-741
Arsenic (As) carcinogenicity to humans and other living organisms has promulgated extensive research on As treatment technologies with varying levels of success; generally, the most efficient methods come with a significantly higher cost burden and they usually perform better in removing As(V) than As(III) from solution. In the reported study, a novel sorbent, a waste by-product of the drinking-water treatment process, namely, drinking-water treatment residuals (WTRs) were evaluated for their ability to adsorb both As(V) and As(III). Drinking-WTRs can be obtained free-of-charge from drinking-water treatment plants, and they have been successfully used to reduce soluble phosphorus (P) concentrations in poorly P-sorbing soils. Phosphate and arsenate molecules have the same tetrahedral geometry, and they chemically behave in a similar manner. We hypothesized that the WTRs would be effective sorbents for both As(V) and As(III) species. Two WTRs (one Fe- and one Al-based) were used in batch experiments to optimize the maximum As(V) and As(III) sorption capacities, utilizing the effects of solid:solution ratios and reaction kinetics. Results showed that both WTRs exhibited high affinities for soluble As(V) and As(III), exhibiting Freundlich type adsorption with no obvious plateau after 2-d of reaction (15000 mg kg-1). The Al-WTR was highly effective in removing both As(V) and As(III), although As(III) removal was much slower. The Fe-WTR showed greater affinity for As(III) than for As(V) and reached As(III) sorption capacity levels similar to those obtained with the Al-WTR-As(V) system (15000 mg kg-1). Arsenic sorption kinetics were biphasic, similar to what has been observed with P sorption by the WTRs. Minimal (<3%) desorption of sorbed As(III) and As(V) was observed, using phosphate as the desorbing ligand. Dissolved Fe2+ concentrations measured during As(III) sorption were significantly correlated (r2=0.74, p<0.005) with the amount of As(III) sorbed by the Fe-WTR. Lack of correlation between Fe2+ in solution and sorbed As(V) (r2=0.2) suggests reductive dissolution of the Fe-WTR mediating As(III) sorption. Results show promising potential for the WTRs in irreversibly retaining As(V) and As(III) that should be further tested in field settings.  相似文献   
69.
Abstract

A novel method of synthesis of tin dioxide quantum dots employing Camellia sinensis shoots as reducing agent and stabilizer is presented. The quantum dots were characterized by UV spectroscopy, X-Ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The crystalline tin dioxide quantum dots with an average size of 4.3?nm were of flake like morphology capped by phenolic compounds of Camellia sinensis. The quantum dots were employed for the photocatalytic degradation of thiamethoxam resulting in 57% degradation within 45 mins.  相似文献   
70.
Increasing application of nitrogen fertilizers in the irrigated lands of the studied area is likely to create a blanket non-point source of nitrate. Groundwater contamination from fertilizers, in this context, has been reported as derived from N03, K+ and 180 composition of groundwater. The data suggest both point and non-point sources of groundwater pollution. Thirty-three percent of the groundwater samples showed nitrate contents exceeding the general acceptable limit of 20 p.p.m. and 15% of the samples crossed the maximum permissible limit of 45 p.p.m. High nitrate levels are associated with high δ18O values, clearly indicating that significant quantities of evaporated (isotopically enriched) irrigation water infiltrate along with fertilizer nitrate to the groundwater system. Different δ18O---N03 trends suggest isotopically distinct, non-point source origins which vary spatially and temporally, due to different degrees of evaporation/recharge and amounts of fertilizer applied. A scatter diagram of N03 vs K+ suggests a common source of these ions when the concentration is less than 40 p.p.m. The investigation indicates that a combination of isotope (180) and hydrochemical data can clearly characterize the impact of fertilizer on groundwater. Application of high nitrate, high potassium groundwater irrigation can minimize the requirement for inorganic fertilizers and bring down the cost of cultivation considerably, through appropriate management of fertilizer and water and modifications in agronomic practices and strategies on crops grown. Such practices will help protect groundwater from further degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号